Wildlife Trust have all but cured the disturbance menace. The western side borders on an industrial estate where there may be more species associated with urban disturbance. It is easily accessible from Lincoln and we can use the Lid car park (Lincolnshire Wildlife Trust has an arrangement with them). The voluntary warden should be able to be with us on the day.

If time permits we will be able to visit Whiston Nature Park (grid ref. SK 915 660) in the afternoon. This is an old gravel working on the west of Lincoln, now managed by LWT. It has some fields with orchids, and lots of water.

The soil is, as would be expected, sandy. Snails are more abundant there than slugs. The warden will be able to direct us to ‘hot spots’ and most records should be new for the site.

Field meeting report

FIELD - Saturday 8 July

Stanton Reservoir, Leicester.

Leader: James Potter
(0116 279 9029) (home)

Jamespotter@operamail.com

This meeting at Stanton Reservoir is to survey land and freshwater molluscs. The reservoir was built 80 years ago and is now managed by Severn Trent Water Ltd, and the surrounding area is managed by Northamptonshire Wildlife Trust as a bird reserve. Although it has had a continuous bird ringing programme in place for 30 years, it has never been subject to a survey of its mollusc populations. The site offers a range of habitats including rough grassland, pasture, scrub and small trees, and also a range of freshwater aquatic environments including the reservoir bordered by reed beds, a settling pond, and various channels of flowing water entering, exiting, and running alongside the reservoir.

Meet in the public car park adjacent to The Shambles public house in Lutterworth (SP 376 844) at 10:30h.

Bring wellingtons and water sampling equipment.

NHM - Saturday 9 September

14:30h in the Demonstration Room.

We welcome as Guest Speaker Ben Rowson from Cardiff on the subject of ‘The enigma of the Streptaxidae, a group of tropical land snails’.

Abstract

In 1890 E.A. Smith was confronted with the shell of an unknown African land snail. Describing it as Ennea aenigmatica, he wrote ‘the office of this little snail… it seems impossible to convey with words any adequate idea of it’. Our ways with words have not improved since Smith’s time, and we are still some way from understanding aenigmatica and its many relatives in the Streptaxidae. The hundreds of species in Africa alone show a range of shell form at least as great as any other pulmonate family. As if to add further mystery, they appear all predatory, feeding entirely on other snails, and their exotic genitalia systems have to be seen to be believed. Systematic studies of this group, using both old and new techniques, are the basis for my PhD project with Cardiff University and the National Museum of Wales. By September I ought to have results to present – though in some ways, the number of mysteries will only increase.

YCS - Saturday and Sunday

9-10 September

Forest of Bowland.

Contact: David Lindley
(01772 867047) (home)
david.lindley3@btinternet.com

1km recording in VC64 south of the A65, a very under recorded area on this scale.

Meet at 10:30h at the car park in Slaidburn on both days, grid ref. SD 713523.

FIELD - Saturday 16 September

Wimbledon Common, South London.

Joint meeting with the London Natural History Society. Leader: June Chatfield
(01483 82214) (home)

Meet in the free car park for Wimbledon Common by the windmill (OS grid ref. TQ 237273) at 10:30h.

We plan to survey the land and fresh water molluscs of the common to be added to the conservation database.

Wimbledon Common was saved from development in the late nineteenth century and is owned and managed by the Wimbledon & Putney Commons Conservators; it is also an SSSI. An excellent book - Wimbledon Common & Putney Heath A natural history, edited by Tony Drakeford and Una Sutcliffe, was published by the Conservators in 2000.

Copies of this at a special price of £15 are obtainable on site from the Warden’s office. The Visitor Centre will be open with access to a stereo microscope to examine finds.

Bring pond gear and leaf-litter sieves, hand lens etc.

Refreshments are available at the Windmill Cafe at lunch time.

Society contacts

Conch Soc: Ron Boyce (0118 935 1413) email: program@conchsoc.org
NHM: Wokingham Road, Earley, Reading RG6 7EL
London Natural History Society: Mick Massey (020 8990 926) 26 Dukes Avenue, Chiswick, London W4 2AE

FIELD - Saturday 7 October

Bracklesham Bay, West Sussex.

Low tide 0.2 m is at 17:40 bst

Leader: Adrian Rundle
(020 8878 6645) (home)

YCS - Saturday 14 October

North York Moors.

Contact: David Lindley
(0113 2697047) (home)
david.lindley3@btinternet.com

1km recording.

Meet at 10:30h at the parking area on the A711, grid ref. NZ 945002.

NHM - Saturday 21 October

14:30h in the Demonstration Room.

We welcome as Guest Speaker Gerardine Holyaak from Cambridge on the subject of ‘Land molluscs of Malta’.

WKSHP - Saturday

23 November

The annual workshop held in Woking offers members the opportunity to receive tuition on identifying difficult groups.

Bookings to Judith Nelson (01483 761210)(home)

 Provisional subject: Podid from samples

NHM - Saturday 9 December

14:30h in the Demonstration Room.

We welcome as Guest Speaker John Llewellyn-Jones from West Mersea on the subject of ‘Shag and snails and’.

2 Society information
3 Society website
21 Richard Hungerford/ Patrick Manson
22 The SCAN project
Danielle Cowell
23-24 Diary

ISSN 1740-1070

THE MAGAZINE OF THE CONCHOLOGICAL SOCIETY OF GREAT BRITAIN & IRELAND

Mollusc World

ISSUE No.10
MARCH 2006

28
Mollusc World

Mollusc World is published 3 times a year by the Conchological Society of Great Britain & Ireland. At the end of March, July and November, and is issued free of charge to members.

We invite all members to contribute to Mollusc World. In addition to the traditional articles, field meeting reports, diary of events and so on, we will be including features, profiles, news from recorders, and reports, diary of events and so on, we will be including records for this sea area.

The Conchological Society of Great Britain & Ireland is one of the oldest existing societies devoted to the study of molluscs. The Society promotes the study of molluscs and their conservation through meetings, publications and distribution recording schemes. The Society publishes Journal of the Society (twice a year) and Mollusc World (three times per year).

The Conchological Society of Great Britain & Ireland is a Registered Charity No. 208205. The Society’s Web Site is at: http://www.conchsoc.org

Society Notes

Founded in 1876 the Conchological Society of Great Britain & Ireland is one of the oldest existing societies devoted to the study of molluscs. The Society promotes the study of molluscs and their conservation through meetings, publications and distribution recording schemes. The Society publishes Journal of the Society (twice a year) and Mollusc World (three times per year).

The Conchological Society of Great Britain & Ireland is a Registered Charity No. 208205. The Society’s Web Site is at: http://www.conchsoc.org

Subscriptions

These cover 1 January to 31 December and are due on 1 January each year.

Ordinary Membership £33.00
Family/joint membership (open to two people living at the same address) £35.00
Institutional Membership (GB and Ireland) £47.00
Institutional Membership (Overseas address) £50.00
Student (in full-time education) £15.00

Please pay one of:
Sterling cheque drawn on a UK bank and made out to “The Conchological Society” to Honorary Membership Secretary: Mike Weidel, 35 Bartleymore Road, Newbury, Berks, RG14 6LD, Tel: 01635 42190, email: membership@conchsoc.org

Eurocheques are no longer accepted by UK banks.

Sterling direct transfer in favour of “The Conchological Society” to National Westminster Bank plc, Bolton Branch, PO Box 2, 24 Deanegate, Bolton, Lancs., BL1 1BN (IBAN: GB12 NWWB 0130 9606 5238 46, BIC: NWWB GB2L);

Standing order if you have a UK bank account.

If you pay UK income tax at the standard rate the Society encourages you to sign a Gift Aid Declaration.

£15.00

Note: Both the Hon. Editor and the Conchological Society of Great Britain & Ireland accept responsibility for any opinions expressed by contributors.

Send please articles to:
Ian Killeen, 53 Charleville Square, Rathfarnham, Dublin 14 Ireland.
Email: iankilleen@icrom.net

Diary of Meetings - Conchological Society

Programme Secretary: Ron Boyce, 447c Wokingham Road, Earley, Reading, Berkshire RG6 7EL

IMPORTANT: Please remember to inform the leader if you are attending a field meeting. If you are held up in traffic or your public transport journey is delayed, it may be possible to ring the Programme Secretary on 01483 491935 on the day of the meeting for information on the location of the field site being surveyed.

Indoor meetings at the Natural History Museum, London at the Palaeontology Demonstration Room at the end of Gallery 30.

Key to meetings:

NHM = Natural History Museum, London, indoor meeting
FIELD = Field Meeting at outdoor location
WSHP = Workshop on molluscan topics
YCS = Yorkshire Conch Soc. events

INDOOR – Saturday 18 March

Parth Museum, Scotland: Joint meeting with the Royal Scottish Geologists Society on invertebrates of temporary ponds. Contact: Adrian Sumner (01260 894640) (home)

YCS – Saturday 1 April

Derwent Valley, SSSS: Contact: David Lindley (0113 2697047) (home) david.lindley3@btinternet.com Meet at 10:30h at the parking area near the M62 at Slaithwaite, grid ref. SE 806346

NHM – Saturday 8 April

14:30h in the Demonstration Room.

Annual General Meeting

Programme Secretary as Adby Dr Iain Light on the subject of ‘The present is the key to the past – an archaeological perspective’

Abstract

At archaeological sites, concentrations of marine mollusc shells, which are known to be deposited by man, can often be interpreted with little ambiguity as food refuse. It is a recurring feature that such concentrations may also contain other shells, whose condition, even allowing for the degradation processes which may have affected the deposit, suggests that they were brought to the site in whole or partly, i.e., they may have been subjected to man-made modification after collection. Glycyrhynchos glycyrhynchos is a species for which worn shells have been reported from archaeological sites throughout the Mediterranean area and the Iberian Peninsula, and occasionally from the British Isles. However, the proportion of these shells a bear a hole in the umbilicus, various processes may account for these holes. Using Glycyrhynchos as a case study, the importance of considering the biology, ecology and living environment of molluscs whose shells feature archaeological sites will be examined.

FIELD – Wednesday - Saturday

26-29 April

Anglesey and the Lleyn Peninsula: Leader: Tom Cliffon (01248 833539) (home) (07767 945355) (mobile) cliffon.tom@btinternet.com This field meeting is being held primarily to look at several species-rich marine sites on the island of Anglesey and the Lleyn Peninsula which have recently produced a number of new records for this sea area, Brachyotetra cultrata, Chydrids dominicans and Alvania beanii to name a few, and Rissio ilioneum which is new not only to this sea area but also the Irish Sea as a whole. I am confident that there is more to be found. The group will have the opportunity to collect species-rich shell and from several sites and have a seshion at my home in Bangor to review the material found. I have a microscope but if anyone else can bring one along it will help greatly.

The meeting will also provide an opportunity to see the New Zealand, Water dropwort plants introduced by the Ministry of Agriculture and Fisheries some years ago and now well and abundantly in many areas in the Menai Straits and south coast of Anglesey.

It will also provide an opportunity to visit a magnificent marine site at Porth Dinham on the Lleyn Peninsula where this uniquely sheltered bay hosts a good range of extant species. There are also marine sites on Anglesey where the group can visit a fresh water lake and the National Nature Reserve at Newborough Warren. The initial meeting point will be at the car park adjacent to Ulyn Dell near Newborough Warren, Anglesey at SH 426647 at 10:00h on Wednesday 26 April. From there, the group will reassemble at the Aberffraw Dunes car park at SH 357690 on the A490, at 13:00h to visit the first of the marine sites. Full details are listed in Issue no. 9 of Mollusc World.

YCS – Saturday 7 May

Flamborough, Cliff top recording. Contact: David Lindley (0113 2697047) (home) david.lindley3@btinternet.com Meet at 10:30h at the North Landing car park, grid ref. TA 139 27R. 2015.

FIELD – Saturday 20 May

Suckley Hills, Worcestershire. Leader: Harry Green (0577 198476 (mobile) harryst4green@britishlibrary.net Meet at SO 731252 on a very muddy morning at 10:00h. Follow the A44 for about 10 km west of Worcester to Cropredy (where there is a bridge over the River Teme) Turn south towards the village of Afton. After about 4 km, just before the village, turn right (south) then after about 200m right again (west) and follow the road which rises quite steeply to Crews Hill. The road then descends and after about 500m (north) and follow the road which rises quite steeply to Suckley Hills. The road then descends and after about 100m (east) and follow the road which rises quite steeply to Suckley Hills. The road then descends and after about 500m of the road grid reference point. Park on the left (east) at the gate into woodland.

The aim of this visit is to explore several woodland sites and hopefully some grassland situated on Silurian limestone which cap parts of the Suckley Hills.

The amount of ground to be covered depends on the weather and energy of participants! Some searches have been made in the area, mainly in very dry conditions. Participants are asked to promise to provide a good range of terrestrial molluscs.

FIELD – Saturday and Sunday

Borders (Rovaghellium), joint meeting with Scottish Borders Biological Records Centre Leader: Adrian Sumner (01620 894640) (home) atsumner@clara.net This will be a meeting to look for slugs and snails, mainly in woodland sites, and possibly some of the Jed Valley woodlands above Jedburgh. Bring suitable clothing for the weather, and stout footwear.

Meet at the Harvester's Visit Centre, which has ample parking, lunch facilities, toilets at 10.00h; we shall return here at lunch time each day To reach Harvester's (grid reference NT 671244) turn off the A68 eastwards on to the B4640, after less than half-a-mile turn right for the visitor centre.

FIELD – Saturday 24 June

Lincoln area, Forest of Thoresby. Chris de Feu (01427 849400) (home) Meet at 10.30h in Lidl’s Car Park facing east [in Outer Circle Road, grid ref SK 977 726].

The main site is Greetswell Hollow on the edge of Lincoln city itself. It is a patch of limestone with 300000 molluscan deposits, parts of which were excavated many years ago. It became derelict in the early 1900s and is now back in the control of nature. It has a stream running through it all the year, there are some calcareous springs, the whole site is about 15 hectares. Somewhere in the sheltered hollows, some are dry, others damp or with pools. It has been greatly disturbed by human activity, but the Lincolnshire
The SCAN project: 5 years of searching and still going strong!

Recent snail search results show that the ‘alien’ snail Hygromia cinctella is still spreading. Since 2001, when snail search was launched, snail searchers have discovered the snail living in 12 new vice counties. It has now spread as far north as Yorkshire! Since 1950, when the species was 1st spotted in Devon, it has settled in a total of 18 counties throughout the UK. In total, we have received 1,029 snail reports and 94 confirmed ‘alien’ snail sightings - take a look at the map for yourself. Schools, families and Conchological Society members have all been involved in collecting this information – so many thanks to those of you who helped!

Snail jokes

(courtesy of www.manandmollusc.net – an interesting site with loads of other stuff)

- Why don’t they serve escargots at McDonald’s restaurants?
 Because at McDonalds, they serve fast food.

(joke by Tim Pearse)

- This guy was washing the dishes in his kitchen and he heard a knock at the door.
 He opened the door and there was nobody there. Just as he was closing it he looked down and saw a snail.
 “What do you want?” he asked the snail.

 “Can I have a glass of water please?” replied the snail.

 “No, clear off!” shouted the guy and he booted the snail down to the bottom of the garden. Two months later he was in the kitchen again and he heard another knock at the door.
 He opened the door, looked down, and saw the snail again.

 “What do you want?” he shouted.

 “Why did you do that?” said the snail.

- Two postal workers had just gotten off their routes for the day when one of the postal workers saw the other step on a snail.

 “Why did you step on that snail, Tom?”, asked his perplexed coworker.

 “Cause that damn snail’s been following me around work all day!”

- One way to become a shell collector is to take a bag of marbles to the beach. Each time you pick up a shell, drop a marble on the beach, so the waves will cover the marble with sand. Keep doing this until all the marbles are hidden in the beach sand.

 When you’ve lost all your marbles, you’ve become a shell collector!

- What to snails use to polish their houses?

 They use snail varnish

(joke from Riana Parsons)

Forthcoming meeting

21-23 September 2006
A Joint Scientific Meeting between

The Malacological Society of London and La Societé Française de Malacologie on Island, Littoral and Lake Mulluscs: endemic, colonization and invasion

At Centre de Culture Scientifique, Île de Taïnou, St Vaast-la-Hougue, Normandie, France

To receive the first circular please contact one of the Organisers:

Dr Maryvonne Charrier
Université de Rennes 1—UMR EcoBio 6533
Campus de Beaulieu, Bat. 14A
F-35042 RENNES Cedex, France
+33(0)2 23 23 30 45
Maryvonne.charrier@univ-rennes1.fr

Dr Simon Cragg,
Institute of Marine Sciences,
School of Biological Sciences,
University of Portsmouth,
Ferry Road, Portsmouth PO4 9PP, UK
+44(0)23 92 84508
simon.cragg@port.ac.uk

Field Meeting Report:
Angling Spring Wood and Ashfield Estate
22 – 23 October 2005
Liz Biles

The fortuitous combination of a request to arrange a field meeting for the Society, and the notification by Tony and Val Marshall of the finding of Malacolimax tenellus in leaf litter in their local wood - subsequently backed up with the record complete with photograph – enabled the organisation of a field meeting to Angling Spring Wood near Great Missenden.

Angling Spring Wood SP 8861 0099 is predominantly an old beech wood of 41 acres with some mixed planting, managed until recently by Chiltern District Council and now by local wildlife groups. The soil is mainly clay with flints overlaying Chalk. The wood has steep slopes within it facing north and south either side of a central ride running east/west. The majority of the mature woodland lies to the north of the ride where Val’s specimen had been collected.

The Field Meeting was arranged specifically to survey for Malacolimax tenellus and Limax cinereoniger. However it was not just ConchSoc members who were involved. Val and Tony had contacted the local mycologists, the Bucks Fungus Group (BFG), and Prestwood Nature (PN) and a party comprising Liz Biles, Ron Boyce, Christine and Pryce Buckle, Penny Cullington (BFG), Rosemary Hill, Jan Light, Val and Tony Marshall, Derek Schafer (BFG) and Peter Topley, set out from the Marshall’s home to rendezvous with Mary Ghullam, and PN members, Avril McMosh, Jill and Ross McVean, Jenny Smith, Colin Simpkins and Ian Taylor in the middle of the wood. After introductions, the distribution of maps of the wood drawn up by Tony, and the Health and Safety briefing, Tony led the way to the area of old beechwood to the north of the ride (Compartment K). When, and if, another specimen of Malacolimax tenellus could be found everyone had had an opportunity to familiarise themselves with it, the plan was to survey the rest of the wood and, in particular, to see if the slug survived in the newer, disturbed part of the wood on the north-facing slopes (Compartment M). Before leaving the central ride Tony pointed out the uncommon species Wood Small Reed (Calamagrostis epigejos), but once up amongst the mature beech the group fanned out and the logrolling and teasing of leaf litter began. A variety of woodland mollusc species turned up including Oxychilus alliarius, which intrigued the mycologists who frequently use smell to help identify specimens.

Rain in the preceding week meant that conditions were damp enough in the wood not to disappoint the mycologists and it was a nibbled specimen of Columba butteracea (Butter Cap) that caught Rosemary’s eye. Upon careful searching through the surrounding leaf litter, Rosemary came up with the first specimen of Malacolimax tenellus of the day. The slug was examined carefully for its distinguishing features; its bright yellow colour, lilac tentacles, short keel, yellow body mucous and the pneumostome to the rear of the mantle. Several specimens were subsequently found in Compartment K though not exclusively in association with fungi and some of them, despite the bright sunshine, grazing the surface of rotting logs. It is worth mentioning here that two specimens of Limax cinereoniger were also found in this part of the wood.

When it came to surveying Compartment M where there were younger beech trees, several specimens of M tenellus were found, on the lower slopes where the leaf litter was deep and there were several fallen trees and reasonable quantities of dead timber. One particular fallen beech had fifteen specimens crawling over the surface of the trunk with only moss and microfungi present. However specimens were also found higher up the slope close to the larch plantation where in one instance a single specimen was feeding on Columba butteracea underneath Holl (Ix sp). Three more specimens were found at the top of the slope where some beechn trees predominated, but interspersed with mature trees.

Altogether the morning yielded the following species: Cochlicopa lubricella, Discus rotundata, Arion ute (agg), Arion sulphus, Arion distinctus, Arion intermedius, Aegopinella nitidula (shell only), Oxychilus cellarius, Oxychilus alliarius, Boettgerilla pallens, Limax maximus (considerable colour variation was noted throughout the wood), Limax cinereoniger, Malacolimax tenellus, Euconulus fulvus L seg, Deroceras reticulatum and Cepaea nemoralis.

After lunch, at the invitation of Prestwood Nature, a smaller group went to Prestwood Picnic Site, an exposed steep Chalk grassland site with some areas of eroded chalk but otherwise a good covering of chalkland flora, in the hope of finding Abida secale. No live specimens were found and it was suggested that those shells found on the surface might well be the result of rabbits burrowing into the hillside.

The site however yielded the following: Cochlicopa lubricella, Cochlicopa lubricella, Abida secale, Vallonia costata, Vallonia excentrica, Vitrina contracta, Aegopinella nitidula juvenil, Candalida intersecta, Cernuella virgata, Monarcha cintiana, Cepaea nemoralis and Helix aspersa. Another delightful find at this site was one of the Birds Nest Fungi, Cyathus olla.

The Saturday was rounded off with a half
An October day on Brendon

Harry Green

The recent arrival of Mollusc World provoked several emotions – pleasure (interesting notes, excellent pictures), frustration (these people know so much more than I do) and guilt! Guilt because during the last few years there have been several field meetings in Worcestershire when I was designated ‘leader’. This last always seemed to me to be a misnomer because those attending always knew far more about molluscs than I did and I thought my only duty was to get attendees to the correct location and, following the horrendous Heath & Safety instructions try to get them off home again in one piece! However, I discovered there was apparently another duty – write an account of the visit for Mollusc World. Hence the guilt – I haven’t done it, excuses, excuses.

The final straw was the recent account of a Nottinghamshire Field Meeting from my friend, another ornithological conchologist, Chris du Feu. He had been carrying on his work at Amoy in China to determine the cause of filariasis but had recently examined a patient who exhibited microscopic eggs in his blood. Manson managed to incubate these eggs and observed small jelly-like creatures, provided with cilia, which swam about in all directions. He sensed the organisms must be looking for something in the water and it struck him that it could be for a freshwater snail. If so, he reasoned that the snail must belong to a species common in ponds and streams of southern China, Japan and Formosa, the areas in which this disease, then called ‘endemic haemoptysis’, later identified as being caused by species of the lung fluke Paragonimus, was common. He therefore wrote to Hungerford in Hong Kong and asked him to forward some snail specimens.

Hungerford sent him a consignment of sixteen snail shells and descriptions of the species Semisulcospira (formerly Semisulcospira) and Chemintzella libertina. This was then known, aged 75, amongst his other contributions to conchology (his shell collection was acquired by G.B. Sowerby 3rd), played a small part in the history of tropical medicine. The photograph of Richard Hungerford, the 85th King’s Light Infantry to form the 35th Regt at Thatto Heath, was then known, having a property in Shannon (now Shannon, October 1834-1909) (figure 1-2) came from a landed family near Cork in Ireland. He was the son of William Hungerford and Jane Toye and grandson of Richard Hungerford, of Clonakilty. His distant ancestor, Sir Thomas Hungerford, Speaker of the House of Commons, had purchased Farleigh Castle in Somerset. A descendant of Sir Thomas, Captain Thomas Hungerford, settled in Cork where he was married in 1640 and purchased considerable estates in the area. Richard Hungerford is recorded as having a property in Shannon (now Ennmet) Square, Clonakilty and his wife Sarah was also born there in 1837.

Hungerford was an M.D. and deputy surgeon general of the 53rd (Shropshire) Regiment of Foot, which is recorded as having tours of duty in Ireland. This regiment was amalgamated in 1881 with the 85th King’s Light Infantry to form the King’s Shropshire Light Infantry (KSLI). In the late 19th century the KSLI saw action in the Sudan but it was also stationed in Hong Kong where, in 1894, it worked in heavily infected areas of the colony during the plague.

I have not been able to find anything about the origins of Richard Hungerford’s conchological interests, however he (and his family) had evidently already travelled widely with the 53rd prior to 1881, since one daughter, Frances was born at Jaffna, in what was then Ceylon, in 1865 and another daughter Mary in Newcastle, Jamaica in 1869 so that his interest in tropical shells probably began at this time. He evidently was stationed in Hong Kong in the 1880’s and made collections there. Several marine species are probably named in his honour, including Erronea hungerfordi (Sowerby, 1888), Compressendentatulium hungerfordi (H. A. Pilsley & Sharp, 1887) and Fulvia hungerfordi (Sowerby, 1901). From the photograph I was quickly taught how to distinguish these species from the others which seem to find churchyard environments so amenable.

Richard Hungerford, Patrick Manson and a small contribution to the understanding of tropical disease.

In 1881 Hungerford’s friend, the Scottish pioneer of tropical medicine Patrick Manson, contacted him. Manson was carrying on his work by Amoy in China to determine the cause of filariasis but had recently examined a patient who exhibited microscopic eggs in his blood. Manson managed to incubate these eggs and observed small jelly-like creatures, provided with cilia, which swam about in all directions. He sensed the organisms must be looking for something in the water, and it struck him that it could be for a freshwater snail. If so, he reasoned that the snail must belong to a species common in ponds and streams of southern China, Japan and Formosa, the areas in which this disease, then called ‘endemic haemoptysis’, later identified as being caused by species of the lung fluke Paragonimus, was common. He therefore wrote to Hungerford in Hong Kong and asked him to forward some snail specimens. Hungerford sent him a consignment of sixteen snail shells and descriptions of the species Semisulcospira (formerly Semisulcospira) and Chemintzella libertina, and that these dainty morsels no longer found in Hong Kong.

Hungerford sent him a consignment of sixteen snail shells and descriptions of the species Semisulcospira (formerly Melanopsis) libertina Gould,1859 (figure 3 from Brott, 1874). These had been found by Hungerford in the streams and watercourses of the Peak in Hong Kong but its distribution, as far as was then known, corresponded to that of the “spitting disease”.

Manson imagined that the flukes, after hatching out from the eggs in water, came into contact with freshwater snails which were subsequently eaten by humans (a supposition which was eventually proved correct). On “questioning some of his patients he found that it was a common practice in some villages to eat these snails, but only when cooked. One informant volunteered the information that the snails fed on dead man’s flesh and that these dainty morsels no longer figured on the bill of fare!”

By 1891 Richard Hungerford had retired from his position, then described as “Dispensary Surgeon”, had moved to England and was living in Hammersmith. London at 117 The Grove with his wife and several children. By the 1901 census (when he was described as Army Medical Officer, retired) they had moved to 43 Fairfield Road, in the Parish of St Michael and All Angels, Cheiswick where he died in 1909, aged 75, having, amongst his other contributions to conchology (his shell collection was acquired by G.B. Sowerby 3rd), played a small part in the history of tropical medicine.

Acknowledgements

References

Brott, A. 1874 Die Melanocenae in Martni und Cheminta Systematisches Conchylien-Kabinet. Kuster, Nurnberg

Manson-Bahr. P 1962 Patrick Manson, the Father of Tropical Medicine. Thomas Nelson & Sons, Edinburgh

http://www.mnbld.gov.uk/hbdtaxon/person/etymology.html for references to species named after Hungerford.

Fig 3. Melanie libertina

Richard Hungerford, Patrick Manson and a small contribution to the understanding of tropical disease.

Richard Hungerford, Patrick Manson and a small contribution to the understanding of tropical disease.

Henry Green

The recent arrival of Mollusc World provoked several emotions — pleasure (interesting notes, excellent pictures), frustration (these people know so much more than I do) and guilt! Guilt because during the last few years there have been several field meetings in Worcestershire when I was designated ‘leader’. This last always seemed to me to be a misnomer because those attending always knew far more about molluscs than I did and I thought my only duty was to get attendees to the correct location and, following the horrendous Heath & Safety instructions try to get them off home again in one piece! However, I discovered there was apparently another duty — write an account of the visit for Mollusc World. Hence the guilt — I haven’t done it, excuses, excuses.

The final straw was the recent account of a Nottinghamshire Field Meeting from my friend, another ornithological conchologist, Chris du Feu. He had been carrying on his work at Amoy in China to determine the cause of filariasis but had recently examined a patient who exhibited microscopic eggs in his blood-sputum. Manson managed to incubate these eggs and observed small jelly-like creatures, provided with cilia, which swam about in all directions. He sensed the organisms must be looking for something in the water, and it struck him that it could be for a freshwater snail. If so, he reasoned that the snail must belong to a species common in ponds and streams of southern China, Japan and Formosa, the areas in which this disease, then called ‘endemic haemoptysis’, later identified as being caused by species of the lung fluke Paragonimus, was common. He therefore wrote to Hungerford in Hong Kong and asked him to forward some snail specimens.

Hungerford sent him a consignment of sixteen snail shells and descriptions of the species Semisulcospira (formerly Semisulcospira) and Chemintzella libertina. This was then known, aged 75, amongst his other contributions to conchology (his shell collection was acquired by G.B. Sowerby 3rd), played a small part in the history of tropical medicine.

Acknowledgements

References

Brott, A. 1874 Die Melanocenae in Martni und Cheminta Systematisches Conchylien-Kabinet. Kuster, Nurnberg

Manson-Bahr. P 1962 Patrick Manson, the Father of Tropical Medicine. Thomas Nelson & Sons, Edinburgh

http://www.mnbld.gov.uk/hbdtaxon/person/etymology.html for references to species named after Hungerford.

Fig 3. Melanie libertina
A Survey in the Forest of Dean David Long

In the Spring of 2004 Gloucestershire Wildlife Management Limited, acting under the auspices of the Gloucestershire Wildlife Trust, invited myself and an arachnologist friend, David Hugh, to make 10 recording visits over two years to “scowles” sites in the Forest of Dean in west Gloucestershire all in vice county 34. We worked together, but others made separate visits to cover habitat, mosses and liverworts and bats.

Although the survey was originally intended to cover both Forest Enterprise and privately owned sites only Forest Enterprise sites were visited.

Scowles are excavations, some going back to Roman times, to recover iron minerals from solution hollows in early Carboniferous rocks especially the Crease Limestone, but also other rocks such as the Drybrook Sandstone. [1] The scowles closely follow the narrow outcrop of these rocks which surround the late Carboniferous sandstones and coals of the central Forest of Dean, from roughly Lydney Park up to the Wigwood area and south again to near Blakeney. The diggings now appear in various forms, from shallow soil and leaf litter filled hollows to holes with prominent rocks and sometimes cave entrances. Vegetation in and around the scowles varies from deciduous woodland to conifer plantations (and occasionally open sites). Recent quarrying is also often associated with these early Carboniferous rocks.

We were supplied with a set of 1:5000 Ordnance Survey-based maps on which scowles and quarries had been marked by Gloucestershire County Council Archaeology Service with colour outlines indicating whether they were in Forest Enterprise or in private ownership. Using these maps, sites were selected for fieldwork, with a bias away from conifer plantations and also from areas where they had been frequently visited in the past. We were also selected to ensure sampling of the overall geographical spread of the scowles.

On site searches were made of litter, using sieves in dry conditions, ground vegetation (swiping), visual searches of tree trunks, rocks, rock faces and herbage and sweep netting and beating of herbage and foliage. Rocks and stones were turned over and replaced. Search duration varied. We did not enter caves. Molluscs were identified in the field.

Three freshwater and 52 land mollusc species were recorded. One of these species, the Slender slug, Malacolimax tenellus, is a Species of Conservation Concern in the UK. Steering Groups Biodiversity Action Plans and it is also Nationally Notable [2]. We decided to do this work and to Forest Enterprise for giving permission for entry on to their land and to David Haigh for doing nearly all the driving and finding most of the uncommon molluscs as well as the spiders.

Detailed records have been passed to GWML (for among others the Gloucestershire Environmental Records Centre) and to the Conchological Society’s Non-marine Recorder.

We found the typical larger slates of limestone grassland Cernuella virgata and Candidula interjecta, and were pleased to find an extensive colony of Helicella itala. Live examples of the latter were closely associated with clumps of dead and falling Musk Thistles Carduus nutans – lift a clump and a cluster of slates were hiding within. Nearby, several species of sub-fossil slates could be seen in eroding soil banks and Punicalugia elegans – a species which still has colonies on another part of the Bredon Hill. The stone walls are well known for their colonies of Pyramidalia rusticana and we found plenty of them under the wall stones and in the scree. Besides molluscs we recorded a few other invertebrates, several harvestmen, hibernating true bugs, the woodlouse hunting spider Dysdera crocata, and in the many ant nests the blind white woodlouse Platantuus hoffmannseggii.

In all, our visit to Bredon Hill provided a very enjoyable day with excellent weather and clear visibility allowing outstanding views of the Coloured Counties. Most of the area visited is designated SSSI and we are grateful to the owner Mark Steele for allowing us access. We plan another visit to the nearby National Nature Reserve with its limey pastures, scrub, old trees, boggy slumps, stone walls, marshy uplands, and the Great Mud Slide. Why don’t you come along?

Harry Green, (Rosemary Hill, Ron Boyce, and David Long).

Molluscs found Bredon Hill, Worcestershire, 1st October 2005.

Aegopinella nitidula
Aegopinella pura
Arion intermedus
Arion intermedius
Candula interjecta
Carychium minimum
Carychium tridentatum
Cochlicopa ascula in disturbed soil
Cepaea hortensis
Cepaea nemoralis
Cernuella virgata
Crassula bidensata
Cochlicopa lucibra
Cochlicopa lucibriceulen
Ctenidium reticulatum
Discus rotundatus
Ena obscura
Helicella itala
Helix aspersa
Lehmannia marginata
Limax maximus
Lymnaea truncatula
Nesovitrea hammonis
Oxylacia allartis
Oxylacia cernulis
Oxylacia heleodora
Oxylacia pfeifferi
Paucidus caustanus
Paucidus perinonotum in soil
Potamogeton vonisperatum
Pupilla muscorum
Pyramidula nigraria
Succinea putris
Tandaria budapestiensis
Trichia hispida
Trichia striatula
Vallonia costata
Vallonia excentrica
Vertigo pygmaea
Vitreo contracta
Vitreo crystallina
[Cochlicopa lucibra subfossil in exposed soil]
[Pomatias elegans subfossil in exposed soil]
[Vallonia excentrica subfossil in exposed soil]

1. The elephant stone on top of Bredon Hill amongst grazed limestone grassland. Picture R Hill
2. Helicella itala found on Bredon Hill. Picture R Boyce
3. Snailing party confer on Bredon Hill rough grassland: Left to right David Long, Rosemary Hill and Harry Green. Picture R Boyce

planation of conifer and alder. From there we emerged on to extensive uneven rough pasture lying on the Upper Lias. On this hummocky stone there is a considerable scattering of Ooziic limestone fragments of all sizes derived from the escarpment above; a scattering of solitary ancient ash trees; and several old tumbledown stone walls. Small trees lie at the base of the steep escarpment. From the rough grassland we climbed the steep north-facing grassy slope of the Inferior Oolite to the closely grazed pastures on the earthworks near the tower. After admiring the amazing view we followed a pathway gently sloping south and running alongside a stone wall to a small beech woodland containing another collapsed stone wall. From here we moved down to another area of rough pasture. While traversing the rough grasslands we investigated several wet flushes and a small stream which meanders through a small marsh near the site of a long-deserted village.

We found many of the commoner slugs and snails in various habitats. Highlights for me included David Long’s ability to find the tiny slates typical of limestone grassland, especially in the marsh near the site of a long-deserted village. A pleasing aftermath was to discover that my conchologist mentor John Meklejoh had not found them on Bredon before! We

David Long

plantation of conifer and alder. From there we emerged on to extensive uneven rough pasture lying on the Upper Lias. On this hummocky stone there is a considerable scattering of Ooziic limestone fragments of all sizes derived from the escarpment above; a scattering of solitary ancient ash trees; and several old tumbledown stone walls. Small trees lie at the base of the steep escarpment. From the rough grassland we climbed the steep north-facing grassy slope of the Inferior Oolite to the closely grazed pastures on the earthworks near the tower. After admiring the amazing view we followed a pathway gently sloping south and running alongside a stone wall to a small beech woodland containing another collapsed stone wall. From here we moved down to another area of rough pasture. While traversing the rough grasslands we investigated several wet flushes and a small stream which meanders through a small marsh near the site of a long-deserted village.

We found many of the commoner slugs and snails in various habitats. Highlights for me included David Long’s ability to find the tiny slates typical of limestone grassland, especially in the marsh near the site of a long-deserted village. A pleasing aftermath was to discover that my conchologist mentor John Meklejoh had not found them on Bredon before! We

David Long
Canal Boats with a Snail Theme

Jane Bonney

While I was still a holiday boater I noticed more than one boat by the name of Brian the Snail, although I can no longer recollect the exact location of any of them, they all seemed to have a certain yellow and red mollusc character painted somewhere on them. It struck me at the time that a snail name was particularly appropriate for this very slow form of transport, given that the maximum speed limit on British Waterways is but 4m.p.h. I determined that when we eventually procured our own boat it should be named Wandering Snail, a most apt name given that it is not only a fresh water species but that we were determined to become what is termed ‘continuous cruisers’. However I was thwarted in my ambition when we discovered that it is frugally hard to rename a boat. We are now stuck with the moniker Tin Lizzie, neither the worst name I can think of nor the best. I would hope to use Wandering Snail one day should we be lucky enough to have a narrow boat custom built.

Quite naturally I have kept a weather eye on other boats and boaters who say that none have rivalled the amount of them, although in all honesty I have to admit that I can think of nor the best. I would have expected to see a snail boat, this time at Fradley Junction between the Trent and Mersey and the Shropshire Union that we spotted it being in the Midlands). The first was ‘The Venice of the North’ (despite its rather beautiful snail logo on the side (Fig 10). During our travels we have also encountered lots of snails incorporated into signs, benches, murals and the like. We have also spotted a fair number of boats with snail ornaments on and in them, although in all honesty I have to say that none have rivalled the amount aboard Tin Lizzie!

It wasn’t until the end of February that we spotted another snail boat, but at Fenny Stratford on the Grand Union Canal we found ourselves moored up opposite Water Snail (Fig 8). This boat had no snail picture although some months later we moored next to Slow Progress (Fig 9) near Devizes on the Kennet and Avon. Although not named for a snail, it had a rather beautiful snail logo on the side (Fig 10).

The only time we saw a River Cruiser (as opposed to a canal boat) with a snail name was in June on the River Severn. Ironically as the speed limit on this waterway is 6m.ph. downstream, it was our boat which was going too fast to get a decent photo! I was able to catch the name on the side of ‘S Cargos’ (Fig 11), but not the lovely snail picture on the back.

During our travels we have also encountered lots of snails incorporated into signs, benches, murals and the like. We have also spotted a fair number of boats with snail ornaments on and in them, although in all honesty I have to say that none have rivalled the amount aboard Tin Lizzie!

Oysters and Horseshoes

Alex Menez
The Gibraltar Museum and the University of Wales, Cardiff

In 1997 the Gibraltar Museum undertook an urban excavation at Casemate’s Square at the entrance to Main Street, Gibraltar. Casemate’s was a port area hundreds of years ago (details and discussion of the excavation are in Finlayson and Finlayson, 1999). The excavation turned up a great deal of very interesting material including many large oysters (Ostrea edulis Linnaeus, 1758) from the 16th century levels. Some of these oysters are much larger than those found around Gibraltar’s shores now and fit the description for O edulis form hippopus Lamarck, 1819.

A striking feature of many of these oysters is the presence of a square perforation (Photo 1) that Professor Chris Finlayson, Dr Derren Fa’afua (both from the Gibraltar Museum) and myself hypothesized were made to ease the opening of the shell. We thought this might be an explanation because perforations were located mostly in the area of the adductor muscle. Knife marks on the inside of many shells suggests people were eating the oysters. We know oysters were popular in the area, as in many other Mediterranean areas (Poppe and Goto, 1993), with extensive oyster beds in the Bay of Gibraltar, up until about 100 years ago (Finlayson and Finlayson, 1999).

With so much other research to occupy us, the case of the perforated oysters took a place (among many others!) on the backburner. Then, on a recent visit to a restaurant in nearby Los Barrios, Spain, I saw old horseshoes (Photo 2) nailed onto a wall, forming part of a collection of old farm implements. It struck me immediately that the holes made an excellent comparison to the ones on our oysters. Although the horseshoes are not contemporary to the oysters, it made me think that perhaps the holes were made in the shells as a means of nailing the shells onto something. Maybe they were used as roof tiles, or for decoration. I’ve not come across any mention of this use locally, nor in the literature generally (but I’ve not done an exhaustive search). Has anyone come across shells perforated in a similar way to the Gibraltar oysters, and if so, why they were perforated?

Images 1-7 relate to specific articles within the magazine.

2-3. Rood-screen panels from the All Saints Church, Clifton. Page 19.
5. SCAN project. Page 22.
6. A horseshoe forming part of a display of old farm implements in a restaurant in Los Barrios, Spain. The horseshoe is about 10cm across at the widest part. Page 19.
7. One of the Gibraltar perforated oysters from the Casemate’s Square excavation. The cut-out area is just over 1cm across. Page 19.
9. A specimen of *Musculium transversum* from the canal at Thoralby.
10. Some large size *Pisidium amnicum* were found in the canal.

 Photos David Lindley

Images A-C relate to Field meeting report. Page 3.

Photos Ron Boyce and Rosemary Hill
Sn@ilmail 2

Please ensure that you follow any code of conduct posted by the institution for use of these web-resources and respect copyright issues.

Biographies of Malacologists. 2400 years on

Those of you who have used the appendices of collectors and collections in Peter Dance’s History of Shell Collecting, will know how useful these resources can be when you are trying to track down a collection or know more about a particular collector Coan et al’s publication is following a new trend, as it is an e-publication freely available to download as a PDF file. It’s about 3.4 MB in size, so it will take a while to download if you do not have broadband at home. There are 664 pages in this catalogue which lists biographies, obituaries and bibliographic papers on malacologists, conchologists, palaeontologists, and others with an interest in molluscs. Amongst the interesting additions in this volume was the Danish collector, Hans Christian Andersen, more well-known for his children’s stories, he was also an avid collector of land and freshwater molluscs.

The first edition was posted June 2004, followed by the second edition in January 2005. The Third Edition has extracted data from Coevelly (1983) and Larbrecht et al (1938) hence it has a more complete coverage of malacologists and the nineteenth-century explorers and naturalists in Central and South America. Each update contains additional information posted in by numerous colleagues around the world, as well as by the authors’ own searches. They welcome information on sources missing from the bio-bibliography. Contact r.e.petz@att.net if you have further information on sources.

Edited from posting by Dick Peters on Conch-L.

NGHW Sources section for Melvill-Tomlin collection

In the Melvill-Tomlin collection there are over 700 recognised secondary sources of material. These collectors provided material to Melvill or Tomlin, often in exchange or to get their species identified. The这么久 have started a programme of imaging letters in the archive (see previous contributions by Jennifer Gallichan in Molluscs Worldwide). On our web-site you can also find a list of these secondary sources along with information on obituaries. This is provided in both English and Welsh: http://www.museumwales.ac.uk/ en/318/Sherborn’s Index Animalium

This digitisation project was funded by the Atherton-Sedell Endowment Fund of the Smithsonian Institution. The volumes are now available as an on-line browsable or searchable database. Hence you can search this either by species name or look for a particular article. As Sherborn set about completing his Atlas to a complete library shelf in Cardiff, this on-line tool is very useful for those who are interested in nomenclature but don’t have access to a large library in their study. Sherborn notes at the end of his main task compiling these volumes, that he hoped that the projects to compile lists of names would continue, as he saved every Zoologist much time duplicating their efforts to search our publications containing species names.

http://www.sil.siu.edu/digitalcollections/index animalium/ <<index_animalium.jpg>>

Neave’s Nomenclator Zoologicus

Funding from GBIF and the Andrew Mellon Foundation has allowed for Shefield Neave’s Nomenclator Zoologicus to be made available through the internet, this is a list of all genera and subgenera in Zoology from 1758 (volumes 1-9), and has been updated to include named species from 1994 to 2004 (Volume 10). In addition there is an editorial tool that allows the digitized copy to be reviewed against the original printed form and corrected when transcription errors are detected. This tool allows reviewers to register and be credited for their work.

http://iao.mbl.edu/NomenclatorZoologicus/

Looking for an off print book? Check out GALLICA - this is the official site of the Bibliothèque Nationale (Paris). The library have undertaken a digitisation programme scanning many old reference books and saving them as page images, in Adobe PDF format. This library provides access to some 15 million pages of class texts. Included are some class malacological works:

http://gallica.bnf.fr/scripts/ConsultationTout.exe?O=0&N=0998966

Lister (1619) - Historia Conchyliorum. Available at: http://gallica.bnf.fr/scripts/ConsultationTout.exe?O=0&N=0999094

Lovell, M. S. The edible molluscs of Great Britain and Ireland with recipes for cooking them. The GALLICA search, retrieval, and download system is simple and free of cost. To search, go to the GALLICA site and click on Recherche. Type in author, title, or search by subject. To download an article, tick Selected Charge, and you will be given the option to download a specific page or the entire work as either a pdf file or a TIFF file.

Fine out about the routes of Challenger Expedition

One of the classic expedition reports from last century was that of the Challenger expedition. The expedition travelled over 360 stations from atlantic through to the pacific oceans. On return the scientific samples were distributed to over 100 scientists, who worked with John Murray, to produce The Report of the Scientific Results of the Exploring Voyage of H.M.S Challenger during the years 1873-76. Over 50 volumes were published between 1885 and 1895. The charts of the route of the Challenger expedition have been digitised and posted on: http://hercules.kgs.ku.edu/hexacoral/anemone/2/chart1_2_small.jpg

Update of Malacolog

Malacolog 4.0 is now online <<http://data.acnatsci.org/wasp>>, with expanded coverage including Westar Atlantic bivalves, scaphopods, chitons, aplacophorans, and monoplacophorans.

How long does periostracum last after the death of the snail? Amanda Millar

When studying the populations of snails, use of often made of the presence of fresh shells; i.e. with outer protein periostracum layer still present. The shells themselves are believed to survive many years, even decades in the surface soil layers if the soils have a pH high. chalk rich soils he verify the shell’s ability to decay for hundreds or even thousands of years, and are extremely useful to help determine earlier environmental conditions.

Several authors (e.g. Evans 1972, Cameron & Morgan-Hew 1975) state that periostracum decays within a year. This would mean that shells with periostracum still present could indeed be counted as fresh and would be useful in population studies. But I have been unable to find evidence to back this very reasonable assertion. How much periostracum would be needed to be called ‘intact’, given that some lose the periostracum on their apex while they are alive? The decay of periostracum could be caused by chemical attack, abrasion, bacteria, temperature fluctuations, snails grazing and other reasons. It would be affected by the pH of the soil, whether buried or exposed to the sun. I think it would also be affected by the pH of the soil, whether buried or exposed to the sun and wind. I think it would be affected by the pH of the soil, whether buried or exposed to the sun.

Wren’s periostracum is left on the surface. They have noticed that some of the periostracum could be caused by chemical attack, abrasion, bacteria, temperature fluctuations, snails grazing and other reasons. It would be affected by the pH of the soil, whether buried or exposed to the sun. I think it would be affected by the pH of the soil, whether buried or exposed to the sun.

Twelve live Helix aspera were killed and the bodies removed and divided into two groups in plastic mesh bags. One bag was buried under the surface of the soil and the other was left on the surface in a relatively undisturbed part of the garden under a fig tree. Another bag of mixed already dead shells, but with complete periostracum was left on the surface. They were exposed to frost and rain in winter, and sheltered from the worst of the summer sun. The results were as follows:

Experiment started 28th December 2002, 4 weeks later much rain and frost on the surface were already starting to show through the periostracum, but those buried were still largely intact.

23rd December 2003 Buried bag: two mature Helix lost 25% and 40% of periostracum on apex and last whorl. Two smaller Helix: one lost 10% from apex and the other 60% mainly from last whorl. Two juveniles; one lost 5% from apex, the other lost 50% flaking off all over the shell. The freshly killed surface bag: 2 mature Helix – one lost 10% around apex and 10% on underside (total 20%), the other lost 90% of apex, and the most recent part of the shell still with periostracum. The other four had lost; one less than 5% from apex; two had lost 5% from apex and 5% from base of last whorl (total 10%), one 5% on apex and 10% on base (total 15%). One juvenile was still largely intact.

Mixed bag: 8 Helix showed losses between 15% and 90%, mostly on apex and underslde. 3 Cepaea; virtually intact; 10% loss and 95% loss respectively. 3 Triclia striolata had all lost the periostracum

2 Monacha cantiana had lost 5% on apex and 10% but apex still intact respectively.

10th November 2005 Buried bag, 6 Helix had all lost 90% of periostracum.

Unburied Helix, now only 5 shells remained, one had lost 90%, one lost 50% and one lost 15%.

The unburied mixed bag, 16 shells reduced to 10 plus fragments: two Cepaea, two Helix and one Monacha had lost 90% of periostracum. one Helix had lost between about 75%. 2 Helix and one Cepaea had lost 30% and the two Triclia still survived with total or partial periostracum intact.

So after three years some of the unburied shells still had as much as 80% of the periostracum intact. Despite initial results the buried shells seemed to lose the most periostracum, suggesting damp and bacteria may have more impact than surface weathering.

Anyone fancy doing a long term experiment with different soils and leaf litters and different levels of aerial exposure?

Refs:
Evans, JG, 1972. Land Snails in Archaeology
I count myself lucky that I live close to another conchologist; in my case it is Adrian Norris. This means that any discussion regarding the identity of a specimen or a particularly interesting site need not take place over the telephone or via the internet. More importantly it means that there is more scope for ad-hoc field trips and as I work shifts there are often times when these can be arranged.

A telephone call on 10th June 2005 established that Adrian was free the following day and I arranged to collect him. As far as the venue was concerned Adrian is currently working towards a PhD on the Feltwell Aqueduct (SD 34/91952) on the Norfolk Broads which he had also visited the previous day. Our plan was to visit this site and hopefully found a few more specimens of Spirometra melanocephala.

The aqueduct is a remarkable piece of engineering that crosses the river on an aqueduct on its western edge just prior to the boundary between Suffolk and Norfolk. It was built during the construction of the Feltwell to Attleborough canal in 1816 but was never completed. The canal was to be a short cutting between Attleborough and Feltwell. During the construction of the canal work came to a halt on funding. When it was finally completed in 1816 it connected Hull to Liverpool utilising the Humber and the Aire and Calder Navigation. It is also worth mentioning that the boundary between present day Norfolk and Suffolk was on the Western edge of the Feltwell Aqueduct which was a road margin to 34 in the highest total of the day. For those interested in statistics, I will mention that during the day we had recorded a total of 51 species, 30 terrestrial and 30 freshwater, which had been obtained from 8 one-kilometre squares. The numbers varied from 4 in the lowest which was a road margin to 34 in the highest. On checking the day’s records against the atlas I discovered that there were 6 new one-kilometre records and 7 confirmed pre 1950 records. It was at this point that I realised the importance of the record for B. leachi. A glance at the atlas will show any observer that the majority of Yorkshire records for this species are in the east of the county and that this old record was stuck out on its own. If I had noticed the record before I would have assumed that it was from the canal but this was not the case. It was whilst compiling this note that I made the research to try and identify the reason for the gap from which the specimens came and

With the addition of these groups, Malacolog documents more than 6000 species of marine mollusks in the Western Atlantic that are currently considered valid, and revision work is currently underway.

I would like to extend special thanks to Dr. Paris Ponder for allowing me access to the Malacolog database. It is a revised classification of the Gastropoda, hence superseding Ponder & Lindberg’s classification. It goes further as for each name a full synonymy is given, with date of publication, type genus, nomenclatural availability and validity under the rules of the ICZN. It covers 2,400 suprageneric names in recent and fossil gastropods, from the subtribe to the superfamily. A further 730 names of higher taxa are listed separately. Altogether 611 valid families, 202 of them freshwater, are recognised in the proposed classification. Bouchet and Rocroi are working on a similar volume which deals with all genera. The book can be ordered from Malacolog. For further details consult the following:

Euro44.00 plus postage.

The genus Oestophora Hesse, 1867 is represented in Iberia by seven species: O. barbula (Eschscholtz, 1829), O. calpeana (Morelet, 1854), O. silvae (Morelet, 1854) and O. calpeana (Morelet, 1854) (Puente, 1994). Of these O. barbula has the widest distribution (mostly western Iberia) followed by O. silvae (north and central western Iberia) and O. calpeana (south eastern Iberia). The others are restricted to southern Iberia. O. calpeana is known in Iberia only from Gibraltar, its type locality. In 1953 Morelet described this species as Helix recticollis B Minor from material collected in Gibraltar by Tarnier. He named it a year later as Helix calpeana (Ortiz de Zárate, 1962), after Calpe, an old name for Gibraltar, thought to derive from the Phoenician kelph, which means to hollow out (Hills, 1974). I have sampled a large number of sites in southern Iberia, as has Arr_bola (1995) and have never found the species other than in Gibraltar. This extremely narrow distribution led Arr_bola to think it may have been introduced, although fossil material from Gibraltar suggests this is not the case.

Ortiz de Zárate (1962) knew the species only from Gibraltar and wrote (p90): ‘Como localidad de la especie solo conozco la citada por el autor, Gibraltar, al pie de las fortificaciones sobre el punto culminante del promontorio’. More recently there are records from Tangier and Ceuta in North Africa (Puente, 1994). Both Kobelt (1883) and Norris (1976) found the species in surveys of Gibraltar. O. calpeana can be found under rocks, logs and other types of shelter in habitats that range from steppe and garigue to maquis and woodland, principally in areas of the Upper Rock, Europa Point, Windmill Hill Flats and the Mediterranean Steps (Menéz, 1993). It is never abundant and where it occurs typical densities in plots of 20x20cm are 0.1-0.2m2. I have sometimes found clusters of 5-10 individuals under the same rock, or log, but this is uncommon. It has a shell height of about 5.0mm (exceptionally to 6.0mm) and a diameter of about 11.5mm (exceptionally over 15mm).

Gibraltar is quite remarkable for its molluscan fauna and in an area of about 6 km2 there are 32 species. There are two other Oestophora species that occur here: O. barbula and O. taurinensis, but, because of its restricted range and name, I like to think of O. calpeana as the Gibraltar snail!

We are lucky in Gibraltar in having robust laws that protect wildlife and O. calpeana is afforded special protections (along with other species) in Schedule 3 of the Nature Protection Ordinance, 1991 (Menéz, 2005). After my fieldwork session at the weekend (carrying out distribution and diversity studies of land molluscs) it occurred to me that very few people have seen the Gibraltar snail. And so the main point of this short article is to show people what it looks like and give a little information about it.

How much harm does collecting dead shells from beaches do?

Sebastian Payne
bas@paynes.demon.co.uk

“A few shells were washed over at the water’s edge, small and perfect, but everyone was too ecologically well behaved to pick up these.”

Introduction:
Recently, walking along a beach in the early morning collecting a few shells, I was asked by a fellow beach-walker to “leave the shells there so that the rest of us can enjoy them.” Talking with him, it was clear that he thought that there was a finite and fairly small number of shells on the beach, and therefore it stood to reason that if I and others collected them, there would soon be none left. This is perhaps symptomatic of an increase in a kind of eco-puritanism which sees little difference between the collection of dead sea shells and the collection of birds’ eggs, and makes no distinction between activities which are harmful, and activities which do little or no harm and have greater benefit.

I said that I thought that this underestimated the number of shells on the beach, and the rate at which they were washed up and destroyed, but he stuck to his guns, and I had to admit that I could not quote and had not read any research directly on the question.

As I was staying there for the next three weeks, and have been aware of an increasing tendency for people to question the acceptability of collecting dead shells from beaches, we agreed that it would be interesting to put the question he had asked to the test by collecting shells every day and seeing whether the numbers collected got much smaller, as he thought, or stayed fairly constant throughout.

The results are far from conclusive - the experiment was not long enough (it would have been very pleasant to stay longer …), the tidal cycle had unexpected effects, and the experimental design could not be prepared to do this and base our decisions on evidence.

December and January (2005/6); the main storms in this area usually happen in the summer months, during the monsoon.

Along the high tide strandline, shells were concentrated mainly at the south end of the beach (Fig. 3), the commonest being small gastropods (mainly naticids). Vannidae, cowries and triviids; there were very few shells on the strandline in the northern and central parts of the beach. At the north end and in the central part of the beach, sparse lines of coral and shell fragments in the lower tidal zone just above the break in slope (Plate 2) produced small numbers of shells including larger gastropods and a range of bivalves. Towards the south end of the beach there were lines, cusps and low ridges of broken shell in the mid tide zone: the distribution varied from day to day, with a general tendency for lines and cusps (Plate 3) to form higher up, and for flatter ridges at right angles to the lines.

The beach, and methods:
The beach is at West Raylly near Ao Nang (Krabi Province) in Southern Thailand, on the west (Andaman Sea) coast of the Isthmus of Kra (Figs. 1 and 2; Plate 1).

It is a gently-sloping fine sand beach several hundred metres long, facing SW, with steep rocky cliffs at each end. The cliffs end abruptly at sea level; immediately offshore the predominantly sandy sea bottom shelves rather gradually, becoming about 10m deep one kilometre out, and 20m deep at three kilometres. Below the cliffs are areas with fallen blocks and boulders and a mudder more stable bottom. Tidal range varies between ca. 1m and 3m. The weather was generally rather calm at the time I was there, in

Corbicula fluminea in the River Thames
Mark Davison, Environment Agency

The Asian Clam (Corbicula fluminea) was first noted in Britain in the river Thames, Norfolk in 1998, and since then it has spread throughout most of the rivers of the Norfolk Broads drainage. Specimens of Corbicula were first noted in the Thames by Oliver Whalley at Teddington in 2004.

Recent sampling has confirmed that Corbicula is now re-producing in the tidal River Thames. One living juvenile Corbicula was collected by the Environment Agency’s Mark Davison in a kick-net sample taken from just below Teddington Lock (grid ref TQ 1674 7144) on 20th October 2005. The specimen was confirmed by Ian Killean. The specimen was alive when collected, and although it measured a little over 1mm across it was still recognised amongst the pea mussels collected with it by the presence of a coarsely sculptured shell and a prominent external ligament. Another juvenile was collected there in November 2005. Two further juvenile individuals measuring 1.9mm and 5.4mm respectively were collected on a subsequent visit to the same site on 18th January 2006. A nearby site at Isleworth (grid ref TQ 1695 7606) also revealed a live juvenile (20th Nov 2005) and dead shell of an adult (12.9mm across) was collected by colleague Kevin O’Connell on 17th February 2006.

The Environment Agency monitors the ecology of the tidal Thames through a network of sites which link into three separate monitoring programs. This record was collected during sampling for the Teddington Low Flow Program, which is a surveillance program developed in response to the need to abstract water from the freshwater Thames for public supply. Sampling is carried out at Teddington, Isleworth, Kew, Barnes and Battersea normally on a quarterly basis. The surveillance program has been running since 1989, prior to the documented arrival of Corbicula in Britain.

As flow has been low during the last year sampling frequency has been increased, in an effort to detect any adverse effects of reduced flow. Since the onset of reduced flow conditions last summer, sampling has been carried out on a monthly basis. The EA’s ecological appraisal officers have been attempting to identify most macro-invertebrates to species level rather than with a general tendency for lines and cusps (Plate 3) to form higher up, and for flatter ridges at right angles to the lines.

The picture on the packet fails

To Woolworths Customer Service dept on buying a packet of their Liquorice Snails and finding that it contained only spirals

Jim Logan writes:

I bought the sweets shown in the attachment and was shocked to find that the packet contained not the snails shown on the outside but only liquorice spirals.

Very disappointing.

Incensed, I wrote a poem of complaint and sent it to the Woolworths Customer Service. I am still waiting for a reply. However, I thought that you might like to include the following in the next edition of Mollusc World as a record was collected during sampling for the Teddington Low Flow Program, which is a surveillance program developed in response to the need to abstract water from the freshwater Thames for public supply. Sampling is carried out at Teddington, Isleworth, Kew, Barnes and Battersea normally on a quarterly basis. The surveillance program has been running since 1989, prior to the documented arrival of Corbicula in Britain.

As flow has been low during the last year sampling frequency has been increased, in an effort to detect any adverse effects of reduced flow. Since the onset of reduced flow conditions last summer, sampling has been carried out on a monthly basis. The EA’s ecological appraisal officers have been attempting to identify most macro-invertebrates to species level rather than

Would you sell coils without heads or tails
So why sell coils without heads or tails
Or Monopoly sets without jails?
Would you sell toy trains without rails?

It breaks all the laws of retail
Eyes and mouth and tentecails.
How can they claim that these are snails?”

I look inside and my face pales.
I bought a bag of liquorice snails.
Involuntary laughter
I bought the sweets

The picture on the packet fails

To show that these are coils not snails.
It shows that there are both heads and tails,
Eyes and mouth and tentacle
It breaks all the laws of retail
To pack a coil and show a snail
Would you sell toy trains without rails?
Would you sell cricket stumps sans bails?
Or Monopoly sets without jails?
Seaside spades with no pails?

Would you sell with both heads or tails?

Disappointed snail enthusiast

I am still waiting for a reply.
However, I thought that you might like to include the following in the next edition of Mollusc World as a record was collected during sampling for the Teddington Low Flow Program, which is a surveillance program developed in response to the need to abstract water from the freshwater Thames for public supply. Sampling is carried out at Teddington, Isleworth, Kew, Barnes and Battersea normally on a quarterly basis. The surveillance program has been running since 1989, prior to the documented arrival of Corbicula in Britain.

As flow has been low during the last year sampling frequency has been increased, in an effort to detect any adverse effects of reduced flow. Since the onset of reduced flow conditions last summer, sampling has been carried out on a monthly basis. The EA’s ecological appraisal officers have been attempting to identify most macro-invertebrates to species level rather than
used by visitors during the day, especially at week-ends. They collected very few shells – I saw only two or three people collecting shells during the three weeks I was there, and a few children collecting shells to decorate sand castles; but they trampled the beach and the strandlines, especially in the upper part of the beach, making it much harder to see the shells. Conditions were good only in the early morning, when there was always an almost-undisturbed strandline (and it was cooler); but the amount of the lower beach that was accessible at that time depended on the state of the tide. I therefore decided to collect in the early morning, and to concentrate on the overnight high tide strandline and a band ca. 2m wide below it, for between one and two hours every morning this band was searched along the whole length of the beach. All complete cowries (Plate 5), trivids (Plate 6), margellids (Plate 7), nerites (Plate 8), Lampsilics hemicardia (Plate 9), and Siliqua spp. (Plates 10) found along this band were collected and removed from the beach. Broken shells were not collected or counted (shells which had lost more than 1mm from a margin by abrasion or chipping were classed as broken and not counted, as also shells perforated by abrasion).

Results: Shells were collected daily for 19 days. One of two patterns had been expected – if there was a relatively few shells on the beach and replacement was slow, the prediction was that numbers would drop rapidly; while if there were more shells and replacement was rapid, the prediction was that numbers would remain fairly constant. Reality (Figs.), as always, was more complicated. Cowries, the most abundant counted taxon, increased rapidly; while if there were more shells and replacement was slow, the amount of the lower beach that was accessible at that time depended on the state of the tide. I therefore decided to collect in the early morning, and to concentrate on the overnight high tide strandline and a band ca. 2m wide below it, for between one and two hours every morning this band was searched along the whole length of the beach. All complete cowries (Plate 5), trivids (Plate 6), margellids (Plate 7), nerites (Plate 8), Lampsilics hemicardia (Plate 9), and Siliqua spp. (Plates 10) found along this band were collected and removed from the beach. Broken shells were not collected or counted (shells which had lost more than 1mm from a margin by abrasion or chipping were classed as broken and not counted, as also shells perforated by abrasion).

Discussion of the results: There is a fairly clear inverse correlation between tide height (Fig. 4) and daily shell counts (e.g. Fig. 5): more shells were found on the high tide strandline during neap tides than during spring tides. The pattern is very clear for cowries, which were the most abundant taxa encountered; the other taxa show more irregular variation, presumably mainly as a result of smaller sample size, but none show a clearly different pattern. The variation that this creates makes it hard to discern longer-term trends, especially as the data cover only nineteen days – just a little more than a 14-day tidal cycle; however there is no rapid initial drop, as would be expected from an extreme “small numbers / low replacement” model, and no indication that the numbers during the early part of the second cycle are lower than during the matching part of the first cycle. Few of the shells collected were very fresh even at the end of the period of collection, which argues against very rapid turnover.

One possible explanation that is consistent with these observations, and which would also explain the rarity of very fresh shells (and also of fragile taxa) is that most of the shells found on the strandline are at least several months old. This was shown as very few were found except in the lower tide zone (see below).

Conclusion and general discussion: Though it is necessary to be cautious for the reasons discussed, the results of this experiment suggest that for this beach, the removal of fair sands numbers of shells from the high tide strandline over a fairly short time caused no very immediate decrease in the numbers of shells on the beach the next day, and thus little damage to the enjoyment of other visitors. It has also been suggested that removing dead shells may be harmful because of the removal of nutrients, and because removing gastropods may deny hermit crabs shells to live in. For this beach neither seems to be a likely problem – it is a limestone area, and hermit crabs are relatively scarce; very few were seen even though apparently suitable shells were reasonably abundant.

To many shell collectors this probably seems unsurprising, it is important for us to realise that it is doesn’t look the same way to many others. To respond to this, we need to do two things. The first is to be willing to do experiments of the kind described here to assess any damage we may be doing and provide evidence to allow us to balance harm – in this case probably very low – against benefit, and show others that we are willing to do this (funders please note: I would be happy to accept a grant to live on a Thai beach for a year …) Where harm seems likely to be done – as is almost certainly the case with some live collection – we need to be clear about the need for restraint.
The Gibraltarian snail, *Oestophora calpeana* (Morelet, 1854), has a restricted range and in Iberia is only found in Gibraltar (its *locus typicus*) where it is afforded special protection in Schedule 3 of the Nature Protection Ordinance, 1991. It has also been recorded from Tangier and Ceuta in North Africa. *Photos: Alex Menez.*

Images A-B relate to article on Page 9.

The Gibraltarian snail, *Oestophora calpeana* (Morelet, 1854), has a restricted range and in Iberia is only found in Gibraltar (its *locus typicus*) where it is afforded special protection in Schedule 3 of the Nature Protection Ordinance, 1991. It has also been recorded from Tangier and Ceuta in North Africa. *Photos: Alex Menez.*

Images C-D relate to article on Page 15.

C. Juvenile *Corbicula fluviatilis* from Teddington (scale bar mm). *Photo: Mark Davison*
D. Sample of *Corbicula* from R. Chet, Norfolk. *Photo: Evelyn Moorkens*